References

- Fichou, D., Watanabe, T., Takeda, T., Miyata, S., Goto, Y. & Nakayama, M. (1988). Jpn. J. Appl. Phys. 27, L429–L430.
- Goto, Y., Hayashi, A., Kimura, Y. & Nakayama, M. (1991). J. Cryst. Growth, 108, 688-698.

Kurtz, S. K. & Perry, T. T. (1968). J. Appl. Phys. 39, 3798-3813.

- Migrdichian, V. (1957). Organic Synthesis, Vol. 1, pp. 171-176. New York: Reinhold.
- Molecular Structure Corporation (1985). TEXSAN. TEXRAY Structure Analysis Package. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.

Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.

Acta Cryst. (1995). C51, 683-685

1:1 Molecular Complex of 2,3,4,5,6-Pentafluoro-*trans*-cinnamic Acid and 4-(*N*,*N*-Dimethylamino)-*trans*-cinnamic Acid

B. SATISH GOUD, P. KRISHNA REDDY, KALIYAMOORTHY PANNEERSELVAM AND GAUTAM R. DESIRAJU

School of Chemistry, University of Hyderabad, PO Central University, Hyderabad 500134, India

(Received 7 March 1994; accepted 6 July 1994)

Abstract

The donor-acceptor complex $C_9H_3F_5O_2.C_{11}H_{13}NO_2$ crystallizes as carboxy-hetero dimers which are stacked to optimize $\pi \cdots \pi$ interactions. Additionally C—H···O, C—H···F, O···F and F···F interactions are important.

Comment

Charge-transfer molecular complexes of cinnamic acids are of interest because of their possible solid-state reactivity (Sarma & Desiraju, 1985). The $\pi \cdots \pi$ interactions between two electronically different cinnamic acids have been exploited in the preparation of asymmetric truxinic acids in the solid state; these acids are good candidates for molecular recognition in host-guest complexes (Weber, Hecker, Csoregh & Czugler, 1989; Desiraju & Sharma, 1991; Sharma, Panneerselvam, Pilati & Desiraju, 1993). The title molecular complex (1) was prepared with the aim of engineering a solid-state reaction. Complex (1) is, however, unreactive upon photoirradiation in the solid state and this led us to study its structural features.

© 1995 International Union of Crystallography Printed in Great Britain – all rights reserved

Acids A (2,3,4,5,6-pentafluoro-trans-cinnamic acid) and B [4-(N,N-dimethylamino)-trans-cinnamic acid] in (1) are hydrogen bonded through carboxyl groups form a hetero dimer. The $O \cdots O$ distances to are 2.61-2.62 Å. The carboxyl groups are partially disordered in the molecule of A with C(9) - O(2)1.246(2) Å, C(9)—O(1) 1.290(2) Å, O(2)—C(9)—C(8) $121.6(2)^{\circ}$, O(1)-C(9)-C(8) 114.9(2)^{\circ} and also in the molecule of B with C(9) - O(2) = 1.251(2) Å, C(9) - C(2) = 0.251(2) Å, C(9) = 0.251(2) Å, C(9) = 0.251(2) Å, C(9) = 0.251(2) Å, C($O(1) 1.293 (2) \text{ Å}, O(2) - C(9) - C(8) 121.7 (2)^{\circ}, O(1) - C(8) 121.7$ C(9)—C(8) 115.8 (2)°. This disorder is caused by the comparable crystal environments around the O(1)and O(2) atoms, especially with regard to their C--- $H \cdots O$ hydrogen-bond forming ability (Leiserowitz, 1976; Goud, Pathaneni & Desiraju, 1993). These hetero dimers are stabilized by C-H...O and C-H...F interactions and form a sheet-like structure along (101) (Fig. 2). These sheets are stacked using $\pi \cdots \pi$ interactions (Fig. 3). Evidence for these interactions is obtained from the deeper colour of the complex (dark yellow) when compared with its constituents (acid A is white and B is light yellow). Interestingly, the donor-acceptor phenyl rings of the A and B molecules do not overlap but instead have a large lateral offset such that $\pi \cdots \pi$ interactions between the aromatic ring and the double bond are optimized. This is a rare occurrence (Sharma et al., 1993).

Fig. 1. ORTEPII (Johnson, 1976) view of complex (1) showing the atom-labelling scheme. Displacement ellipsoids are plotted at the 50% probability level.

Fig. 2. Molecular complex (1) viewed along (101) to show the sheet structure.

Fig. 3. $\pi \cdots \pi$ stacking in the donor-acceptor complex (1).

The phenyl-phenyl centroid-to-centroid distance is 4.84 Å and the mean plane-to-plane distance is 3.34 Å. For this reason, the two double bonds of the stacked donor and acceptor molecules are separated by 5.0 Å, which exceeds the photochemical reaction threshold distance for 2 + 2 cycloaddition (Schmidt, 1964). The C-F distances (Table 2) are typical. The mean C—F distance in a collection of 293 fluoro-substituted aromatic compounds from the Cambridge Structural Database (1994; Version 5.07) was found to be 1.344 Å with 96% of the lengths being clustered in the range 1.295-1.385 Å. $F \cdots F$ contacts of 2.76 Å are formed between inversionrelated F atoms, but C—H···F contacts seem to be more important because of the greater electronegativity of the F atoms. All these interactions stabilize the crystal structure of complex (1).

Experimental

Dark-yellow crystals of the 1:1 complex (1) (m.p. 441-442 K) were obtained exclusively by slow evaporation of an equimolar solution of acid A (m.p. 423 K) and acid B (m.p. 498 K) in 1:2 EtOAc-benzene. The acids A and B were themselves prepared from the corresponding aldehydes by literature procedures.

Crystal data

$C_9H_3F_5O_2.C_{11}H_{13}NO_2$	Mo $K\alpha$ radiation
$M_r = 429.34$	$\lambda = 0.71073 \text{ Å}$
Triclinic	Cell parameters from 20
Pī	reflections
a = 7.383(1) Å	$\theta = 10-25^{\circ}$
b = 11.045(2) Å	$\mu = 0.142 \text{ mm}^{-1}$
c = 11.253 (2) Å	T = 293 (2) K
$\alpha = 92.68 (2)^{\circ}$	Needle
$\beta = 90.38 (2)^{\circ}$	$0.3 \times 0.2 \times 0.15$ mm
$\gamma = 95.93 (2)^{\circ}$	Dark yellow
V = 911.7 (3) Å ³	-
Z = 2	
$D_{\rm r} = 1.564 {\rm Mg} {\rm m}^{-3}$	

Data collection

Syntex R3 diffractometer	$h = -8 \rightarrow 8$
$\omega/2\theta$ scans	$k = -13 \rightarrow 13$
Absorption correction:	$l = 0 \rightarrow 13$
none	3 standard reflections
3195 measured reflections	monitored every 200
3195 independent reflections	reflections
2216 observed reflections	frequency: 100 min
$[I > 2\sigma(I)]$	intensity decay: 3%
$\theta_{\rm max} = 24.99^{\circ}$	

Refinement

Refinement on F^2	$(\Delta/\sigma)_{\rm max} = 0.038$
$R[F^2 > 2\sigma(F^2)] = 0.0329$	$\Delta \rho_{\rm max} = 0.150 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.0875$	$\Delta \rho_{\rm min} = -0.249 \ {\rm e} \ {\rm \AA}^{-3}$
S = 1.064	Extinction correction: none
3195 reflections	Atomic scattering factors
335 parameters	from International Tables
H atoms refined isotropically	for Crystallography (1992,
$w = 1/[\sigma^2(F_o^2) + (0.0597P)^2]$	Vol. C, Tables 4.2.6.8 and
where $P = (F_o^2 + 2F_c^2)/3$	6.1.1.4)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å²)

$$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j$$

	x	у	z	U_{eq}
CIA	0.5814 (2)	0.7546 (2)	0.6965 (2)	0.0188 (4)
C2A	0.6220 (2)	0.8505 (2)	0.6220 (2)	0.0197 (4)
C3A	0.5702 (2)	0.8451 (2)	0.5042 (2)	0.0217 (4)
C4A	0.4683 (2)	0.7434 (2)	0.4571 (2)	0.0226 (4)
C5A	0.4224 (2)	0.6472 (2)	0.5273 (2)	0.0213 (4)
C6A	0.4811 (2)	0.6521 (2)	0.6437 (2)	0.0193 (4)
C7A	0.6457 (2)	0.7663 (2)	0.8193 (2)	0.0206 (4)
C8A	0.6153 (2)	0.6876 (2)	0.9041 (2)	0.0232 (4)
C9A	0.6961 (2)	0.7149 (2)	1.0232 (2)	0.0212 (4)
O 1 <i>A</i>	0.6740 (2)	0.6266(1)	1.0945 (1)	0.0319 (3)
02A	0.7793 (2)	0.8163(1)	1.0513(1)	0.0300 (3)
F1A	0.7201 (2)	0.9526(1)	0.6640(1)	0.0277 (3)
F2A	0.6212(1)	0.9380(1)	0.4347 (1)	0.0295 (3)
F3A	0.4163 (2)	0.7377 (1)	0.3426 (1)	0.0321 (3)
F4A	0.3220(1)	0.5474 (1)	0.4815 (1)	0.0296 (3)
F5A	0.4406 (1)	0.5523 (1)	0.7056 (1)	0.0255 (2)
C1 <i>B</i>	1.0448 (2)	0.7304 (2)	1.6552 (2)	0.0200 (4)
C2B	1.1143 (2)	0.8430 (2)	1.7086 (2)	0.0209 (4)
C3B	1.1720 (2)	0.8542 (2)	1.8253 (2)	0.0220 (4)
C4B	1.1650 (2)	0.7510 (2)	1.8958 (2)	0.0199 (4)
C5B	1.0937 (2)	0.6386 (2)	1.8423 (2)	0.0215 (4)
C6B	1.0353 (2)	0.6295 (2)	1.7260 (2)	0.0219 (4)
C7B	0.9834 (2)	0.7157 (2)	1.5324 (2)	0.0202 (4)
C8B	1.0003 (2)	0.7981 (2)	1.4489 (2)	0.0220 (4)
C9B	0.9212 (2)	0.7719 (2)	1.3310 (2)	0.0204 (4)
C10B	1.2888 (3)	0.8788 (2)	2.0663 (2)	0.0314 (5)
C11 <i>B</i>	1.2032 (3)	0.6558 (2)	2.0835 (2)	0.0288 (5)
N1 <i>B</i>	1.2267 (2)	0.7607 (1)	2.0107 (1)	0.0233 (3)
O1 <i>B</i>	0.9472 (2)	0.8587(1)	1.2578 (1)	0.0312 (3)
O2 <i>B</i>	0.8318 (2)	0.6720(1)	1.3031 (1)	0.0303 (3)

Table 2. Selected geometric parameters (Å, °)

C1A—C2A	1.391 (2)	C9A01A	1.290 (2)
C1A—C6A	1.393 (2)	C1B—C6B	1.397 (3)
C1A—C7A	1.453 (2)	C1BC2B	1.402 (2)
C2A—F1A	1.340 (2)	C1B—C7B	1.447 (2)
C2A—C3A	1.375 (2)	C2B—C3B	1.374 (2)
C3A—F2A	1.343 (2)	C3B—C4B	1.416 (2)
C3A—C4A	1.369 (3)	C4B—N1B	1.363 (2
C4A—F3A	1.339 (2)	C4B—C5B	1.404 (3)
C4A—C5A	1.369 (3)	C5B—C6B	1.371 (3)
C5A—F4A	1.343 (2)	C7B—C8B	1.336 (3

C5AC6A	1.374 (2)	C8B—C9B	1.450 (2)
C6A—F5A	1.340 (2)	C9B—O2B	1.251 (2)
C7AC8A	1.325 (3)	C9B—O1B	1.293 (2)
C8AC9A	1.469 (2)	C10B—N1B	1.449 (2)
C9A—O2A	1.246 (2)	C11 <i>B</i> —N1 <i>B</i>	1.446 (2)
C2A-C1A-C6A	115.2 (2)	C7AC8AC9A	120.3 (2)
C2AC1AC7A	119.6 (2)	02AC9AO1A	123.6 (2)
C6AC1AC7A	125.2 (2)	02AC9AC8A	121.6 (2)
F1AC2AC3A	117.2 (2)	01AC9AC8A	114.9 (2)
FIAC1AC1A	119.8 (2)	C6BC1BC2B	117.1 (2)
C3A-C2A-C1A	123.0 (2)	C6BC1BC7B	119.8 (2)
F2A-C3A-C4A	119.9 (2)	C2BC1BC7B	123.0 (2)
F2A-C3A-C2A	120.5 (2)	C3BC2BC1B	121.7 (2)
C4AC3AC2A	119.6 (2)	C2BC3BC4B	120.8 (2)
F3A—C4A—C3A	120.0 (2)	N1BC4BC5B	121.6 (2)
F3AC4AC5A	120.4 (2)	N1BC4BC3B	121.1 (2)
C3AC4AC5A	119.6 (2)	C5BC4BC3B	117.3 (2)
F4AC5AC4A	119.8 (2)	C6BC5BC4B	121.1 (2)
F4AC5AC6A	120.1 (2)	C5BC6BC1B	122.0 (2)
C4A—C5A—C6A	120.1 (2)	C8B—C7B—C1B	128.0 (2)
F5AC6AC5A	117.1 (2)	C7BC8BC9B	121.5 (2)
F5AC6AC1A	120.4 (2)	O2BC9BO1B	122.5 (2)
C5AC6AC1A	122.4 (2)	O2BC9BC8B	121.7 (2)
C8AC7AC1A	128.4 (2)	O1BC9BC8B	115.8 (2)

Table 3. Hydrogen-bonding geometry (Å, °)

D — $H \cdot \cdot \cdot A$	DH	HA	$D \cdot \cdot \cdot A$	$D - H \cdots H$
O1A—H1A···O2B	0.98 (3)	1.64 (3)	2.618 (1)	173 (3)
O1 <i>B</i> —H1 <i>B</i> ···O2A	0.90 (3)	1.74 (3)	2.626(1)	169 (3)
$C8A - H8A \cdot \cdot \cdot O1A^{i}$	1.00 (2)	2.904 (19)	3.882 (4)	167 (1)
$C2B - H2B \cdot \cdot \cdot O1B^{ii}$	0.97 (2)	2.689 (18)	3.374 (4)	129 (1)
C3B—H3B···O2A ⁱⁱ	0.99 (2)	2.872 (19)	3.820 (4)	159 (1)
C5B—H5B····O1A ⁱⁱⁱ	0.96 (2)	2.90 (2)	3.633 (4)	135 (1)
C6 <i>B</i> —H6 <i>B</i> ···O2 <i>B</i> ⁱⁱⁱ	0.97 (2)	2.92 (2)	3.571 (4)	125 (1)
C10 <i>B</i> —H102 <i>B</i> ···O1 <i>B</i> ^{iv}	1.03 (2)	2.91 (2)	3.318 (4)	105 (1)
$C11B$ — $H112B \cdots O1A^{iii}$	0.96 (2)	2.90 (2)	3.525 (4)	162 (2)
C11BH113B····O1A ^{iv}	1.05 (2)	2.90 (2)	3.888 (4)	158 (2)
$C2B - H2B \cdot \cdot \cdot F2A^{\vee}$	0.97 (2)	2.687 (19)	3.420 (2)	133 (1)
C7 <i>B</i> —H7 <i>B</i> ···F4 <i>A</i> ⁱ	0.89 (2)	2.635 (19)	3.479 (4)	161 (1)
$C8B - H8B \cdot \cdot \cdot F1A^{v}$	0.94 (2)	2.781 (18)	3.556 (4)	141 (1)
C10B—H101B···F3A ^{vi}	1.04 (2)	2.76 (2)	3.607 (4)	152 (2)
C10B—H101B···F1A ⁱⁱ	1.04 (2)	2.80 (2)	3.491 (4)	124 (1)
C11B—H111B····F3A ^{vi}	0.96 (2)	2.39 (3)	3.346 (3)	175 (2)
Symmetry codes: (i) 1	-x, 1-y	y, 2 - z; (ii) 2	2-x, 2-y,	3 - z; (iii)
2-x, 1-y, 3-z; (iv).	x, y, 1+z; (v) $2 - x, 2 - y$, 2 - z; (vi) 1	+x, y, 2+z

Data collection: Syntex R3 diffractometer. Cell refinement: Syntex R3 diffractometer. Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1994). Molecular graphics: ORTEPII (Johnson, 1976); PLUTO (Motherwell & Clegg, 1978). Software used to prepare material for publication: SHELXL93.

We thank the Department of Science and Technology and the University Grants Commission, Government of India for financial assistance. We thank Dr W. T. Robinson, University of Canterbury, New Zealand, for the data collection.

References

- Goud, B. S., Pathaneni, S. S. & Desiraju, G. R. (1993). Acta Cryst. C49, 1107-1111.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Leiserowitz, L. (1976). Acta Cryst. B32, 775-802.
- Motherwell, W. D. S. & Clegg, W. (1978). PLUTO. Program for Plotting Molecular and Crystal Structures. Univ. of Cambridge, England.
- Sarma, J. A. R. P. & Desiraju, G. R. (1985). J. Chem. Soc. Perkin Trans. 2, pp. 1905–1912.
- Schmidt, G. M. J. (1964). J. Chem. Soc. pp. 2014-2021.
- Sharma, C. V. K., Panneerselvam, K., Pilati, T. & Desiraju, G. R. (1993). J. Chem. Soc. Perkin Trans. 2, pp. 2209–2217.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1994). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.
- Weber, E., Hecker, M., Csoregh, I. & Czugler, M. (1989). J. Am. Chem. Soc. 111, 7866-7872.

Acta Cryst. (1995). C51, 685-688

3,5-Diamino-6-(2-methylphenyl)-1,2,4triazine Monohydrate: an Analogue of Lamotrigine

ROBERT W. JANES AND R. A. PALMER

Department of Crystallography, Birkbeck College, University of London, Malet Street, London WC1E 7HX, England

(Received 9 May 1994; accepted 6 December 1994)

Abstract

The asymmetric unit of $2C_{10}H_{11}N_5.H_2O$ contains two conformers of the triazine molecule and a water molecule; each conformer has distinct dihedral angles between the respective phenyl and triazine rings [100.8 (1) and 61.7 (1)°]. These two conformers exhibit significant differences in certain bond lengths and angles which may arise because of their different dihedral angles. Although crystallized from acetonitrile, the extensive hydrogen-bonding network that maintains the crystal structure incorporates a water molecule.

Comment

The molecule studied is an analogue of the anticonvulsant 3,5-diamino-6-(2,3-dichlorophenyl)-1,2,4-triazine, known as lamotrigine (Janes, Lisgarten & Palmer, 1989), and was supplied by Wellcome Pharmaceuticals (UK). The structure was determined as part of an on-going investigation into structure-activity studies on a series of lamotrigine analogues (Janes & Palmer,

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: HR1028). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Desiraju, G. R. & Sharma, C. V. K. (1991). J. Chem. Soc. Chem. Commun. pp. 1239–1240.